(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
overlap(Cons(x, xs), ys) → overlap[Ite][True][Ite](member(x, ys), Cons(x, xs), ys)
overlap(Nil, ys) → False
member(x', Cons(x, xs)) → member[Ite][True][Ite](!EQ(x, x'), x', Cons(x, xs))
member(x, Nil) → False
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs, ys) → overlap(xs, ys)
The (relative) TRS S consists of the following rules:
!EQ(S(x), S(y)) → !EQ(x, y)
!EQ(0, S(y)) → False
!EQ(S(x), 0) → False
!EQ(0, 0) → True
overlap[Ite][True][Ite](False, Cons(x, xs), ys) → overlap(xs, ys)
member[Ite][True][Ite](False, x', Cons(x, xs)) → member(x', xs)
overlap[Ite][True][Ite](True, xs, ys) → True
member[Ite][True][Ite](True, x, xs) → True
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
overlap(Cons(x, xs), ys) → overlap[Ite][True][Ite](member(x, ys), Cons(x, xs), ys)
overlap(Nil, ys) → False
member(x', Cons(x, xs)) → member[Ite][True][Ite](!EQ(x, x'), x', Cons(x, xs))
member(x, Nil) → False
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs, ys) → overlap(xs, ys)
The (relative) TRS S consists of the following rules:
!EQ(S(x), S(y)) → !EQ(x, y)
!EQ(0', S(y)) → False
!EQ(S(x), 0') → False
!EQ(0', 0') → True
overlap[Ite][True][Ite](False, Cons(x, xs), ys) → overlap(xs, ys)
member[Ite][True][Ite](False, x', Cons(x, xs)) → member(x', xs)
overlap[Ite][True][Ite](True, xs, ys) → True
member[Ite][True][Ite](True, x, xs) → True
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
overlap(Cons(x, xs), ys) → overlap[Ite][True][Ite](member(x, ys), Cons(x, xs), ys)
overlap(Nil, ys) → False
member(x', Cons(x, xs)) → member[Ite][True][Ite](!EQ(x, x'), x', Cons(x, xs))
member(x, Nil) → False
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(xs, ys) → overlap(xs, ys)
!EQ(S(x), S(y)) → !EQ(x, y)
!EQ(0', S(y)) → False
!EQ(S(x), 0') → False
!EQ(0', 0') → True
overlap[Ite][True][Ite](False, Cons(x, xs), ys) → overlap(xs, ys)
member[Ite][True][Ite](False, x', Cons(x, xs)) → member(x', xs)
overlap[Ite][True][Ite](True, xs, ys) → True
member[Ite][True][Ite](True, x, xs) → True
Types:
overlap :: Cons:Nil → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
overlap[Ite][True][Ite] :: False:True → Cons:Nil → Cons:Nil → False:True
member :: S:0' → Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
member[Ite][True][Ite] :: False:True → S:0' → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: Cons:Nil → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
overlap,
member,
!EQThey will be analysed ascendingly in the following order:
member < overlap
!EQ < member
(6) Obligation:
Innermost TRS:
Rules:
overlap(
Cons(
x,
xs),
ys) →
overlap[Ite][True][Ite](
member(
x,
ys),
Cons(
x,
xs),
ys)
overlap(
Nil,
ys) →
Falsemember(
x',
Cons(
x,
xs)) →
member[Ite][True][Ite](
!EQ(
x,
x'),
x',
Cons(
x,
xs))
member(
x,
Nil) →
FalsenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs,
ys) →
overlap(
xs,
ys)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Trueoverlap[Ite][True][Ite](
False,
Cons(
x,
xs),
ys) →
overlap(
xs,
ys)
member[Ite][True][Ite](
False,
x',
Cons(
x,
xs)) →
member(
x',
xs)
overlap[Ite][True][Ite](
True,
xs,
ys) →
Truemember[Ite][True][Ite](
True,
x,
xs) →
TrueTypes:
overlap :: Cons:Nil → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
overlap[Ite][True][Ite] :: False:True → Cons:Nil → Cons:Nil → False:True
member :: S:0' → Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
member[Ite][True][Ite] :: False:True → S:0' → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: Cons:Nil → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
The following defined symbols remain to be analysed:
!EQ, overlap, member
They will be analysed ascendingly in the following order:
member < overlap
!EQ < member
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
!EQ(
gen_S:0'5_0(
n7_0),
gen_S:0'5_0(
+(
1,
n7_0))) →
False, rt ∈ Ω(0)
Induction Base:
!EQ(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) →RΩ(0)
False
Induction Step:
!EQ(gen_S:0'5_0(+(n7_0, 1)), gen_S:0'5_0(+(1, +(n7_0, 1)))) →RΩ(0)
!EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) →IH
False
We have rt ∈ Ω(1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n0).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
overlap(
Cons(
x,
xs),
ys) →
overlap[Ite][True][Ite](
member(
x,
ys),
Cons(
x,
xs),
ys)
overlap(
Nil,
ys) →
Falsemember(
x',
Cons(
x,
xs)) →
member[Ite][True][Ite](
!EQ(
x,
x'),
x',
Cons(
x,
xs))
member(
x,
Nil) →
FalsenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs,
ys) →
overlap(
xs,
ys)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Trueoverlap[Ite][True][Ite](
False,
Cons(
x,
xs),
ys) →
overlap(
xs,
ys)
member[Ite][True][Ite](
False,
x',
Cons(
x,
xs)) →
member(
x',
xs)
overlap[Ite][True][Ite](
True,
xs,
ys) →
Truemember[Ite][True][Ite](
True,
x,
xs) →
TrueTypes:
overlap :: Cons:Nil → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
overlap[Ite][True][Ite] :: False:True → Cons:Nil → Cons:Nil → False:True
member :: S:0' → Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
member[Ite][True][Ite] :: False:True → S:0' → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: Cons:Nil → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
!EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → False, rt ∈ Ω(0)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
The following defined symbols remain to be analysed:
member, overlap
They will be analysed ascendingly in the following order:
member < overlap
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
member(
gen_S:0'5_0(
1),
gen_Cons:Nil4_0(
n336_0)) →
False, rt ∈ Ω(1 + n336
0)
Induction Base:
member(gen_S:0'5_0(1), gen_Cons:Nil4_0(0)) →RΩ(1)
False
Induction Step:
member(gen_S:0'5_0(1), gen_Cons:Nil4_0(+(n336_0, 1))) →RΩ(1)
member[Ite][True][Ite](!EQ(0', gen_S:0'5_0(1)), gen_S:0'5_0(1), Cons(0', gen_Cons:Nil4_0(n336_0))) →LΩ(0)
member[Ite][True][Ite](False, gen_S:0'5_0(1), Cons(0', gen_Cons:Nil4_0(n336_0))) →RΩ(0)
member(gen_S:0'5_0(1), gen_Cons:Nil4_0(n336_0)) →IH
False
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
overlap(
Cons(
x,
xs),
ys) →
overlap[Ite][True][Ite](
member(
x,
ys),
Cons(
x,
xs),
ys)
overlap(
Nil,
ys) →
Falsemember(
x',
Cons(
x,
xs)) →
member[Ite][True][Ite](
!EQ(
x,
x'),
x',
Cons(
x,
xs))
member(
x,
Nil) →
FalsenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs,
ys) →
overlap(
xs,
ys)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Trueoverlap[Ite][True][Ite](
False,
Cons(
x,
xs),
ys) →
overlap(
xs,
ys)
member[Ite][True][Ite](
False,
x',
Cons(
x,
xs)) →
member(
x',
xs)
overlap[Ite][True][Ite](
True,
xs,
ys) →
Truemember[Ite][True][Ite](
True,
x,
xs) →
TrueTypes:
overlap :: Cons:Nil → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
overlap[Ite][True][Ite] :: False:True → Cons:Nil → Cons:Nil → False:True
member :: S:0' → Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
member[Ite][True][Ite] :: False:True → S:0' → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: Cons:Nil → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
!EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → False, rt ∈ Ω(0)
member(gen_S:0'5_0(1), gen_Cons:Nil4_0(n336_0)) → False, rt ∈ Ω(1 + n3360)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
The following defined symbols remain to be analysed:
overlap
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
overlap(
gen_Cons:Nil4_0(
n701_0),
gen_Cons:Nil4_0(
0)) →
False, rt ∈ Ω(1 + n701
0)
Induction Base:
overlap(gen_Cons:Nil4_0(0), gen_Cons:Nil4_0(0)) →RΩ(1)
False
Induction Step:
overlap(gen_Cons:Nil4_0(+(n701_0, 1)), gen_Cons:Nil4_0(0)) →RΩ(1)
overlap[Ite][True][Ite](member(0', gen_Cons:Nil4_0(0)), Cons(0', gen_Cons:Nil4_0(n701_0)), gen_Cons:Nil4_0(0)) →RΩ(1)
overlap[Ite][True][Ite](False, Cons(0', gen_Cons:Nil4_0(n701_0)), gen_Cons:Nil4_0(0)) →RΩ(0)
overlap(gen_Cons:Nil4_0(n701_0), gen_Cons:Nil4_0(0)) →IH
False
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
overlap(
Cons(
x,
xs),
ys) →
overlap[Ite][True][Ite](
member(
x,
ys),
Cons(
x,
xs),
ys)
overlap(
Nil,
ys) →
Falsemember(
x',
Cons(
x,
xs)) →
member[Ite][True][Ite](
!EQ(
x,
x'),
x',
Cons(
x,
xs))
member(
x,
Nil) →
FalsenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs,
ys) →
overlap(
xs,
ys)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Trueoverlap[Ite][True][Ite](
False,
Cons(
x,
xs),
ys) →
overlap(
xs,
ys)
member[Ite][True][Ite](
False,
x',
Cons(
x,
xs)) →
member(
x',
xs)
overlap[Ite][True][Ite](
True,
xs,
ys) →
Truemember[Ite][True][Ite](
True,
x,
xs) →
TrueTypes:
overlap :: Cons:Nil → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
overlap[Ite][True][Ite] :: False:True → Cons:Nil → Cons:Nil → False:True
member :: S:0' → Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
member[Ite][True][Ite] :: False:True → S:0' → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: Cons:Nil → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
!EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → False, rt ∈ Ω(0)
member(gen_S:0'5_0(1), gen_Cons:Nil4_0(n336_0)) → False, rt ∈ Ω(1 + n3360)
overlap(gen_Cons:Nil4_0(n701_0), gen_Cons:Nil4_0(0)) → False, rt ∈ Ω(1 + n7010)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
member(gen_S:0'5_0(1), gen_Cons:Nil4_0(n336_0)) → False, rt ∈ Ω(1 + n3360)
(17) BOUNDS(n^1, INF)
(18) Obligation:
Innermost TRS:
Rules:
overlap(
Cons(
x,
xs),
ys) →
overlap[Ite][True][Ite](
member(
x,
ys),
Cons(
x,
xs),
ys)
overlap(
Nil,
ys) →
Falsemember(
x',
Cons(
x,
xs)) →
member[Ite][True][Ite](
!EQ(
x,
x'),
x',
Cons(
x,
xs))
member(
x,
Nil) →
FalsenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs,
ys) →
overlap(
xs,
ys)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Trueoverlap[Ite][True][Ite](
False,
Cons(
x,
xs),
ys) →
overlap(
xs,
ys)
member[Ite][True][Ite](
False,
x',
Cons(
x,
xs)) →
member(
x',
xs)
overlap[Ite][True][Ite](
True,
xs,
ys) →
Truemember[Ite][True][Ite](
True,
x,
xs) →
TrueTypes:
overlap :: Cons:Nil → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
overlap[Ite][True][Ite] :: False:True → Cons:Nil → Cons:Nil → False:True
member :: S:0' → Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
member[Ite][True][Ite] :: False:True → S:0' → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: Cons:Nil → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
!EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → False, rt ∈ Ω(0)
member(gen_S:0'5_0(1), gen_Cons:Nil4_0(n336_0)) → False, rt ∈ Ω(1 + n3360)
overlap(gen_Cons:Nil4_0(n701_0), gen_Cons:Nil4_0(0)) → False, rt ∈ Ω(1 + n7010)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
member(gen_S:0'5_0(1), gen_Cons:Nil4_0(n336_0)) → False, rt ∈ Ω(1 + n3360)
(20) BOUNDS(n^1, INF)
(21) Obligation:
Innermost TRS:
Rules:
overlap(
Cons(
x,
xs),
ys) →
overlap[Ite][True][Ite](
member(
x,
ys),
Cons(
x,
xs),
ys)
overlap(
Nil,
ys) →
Falsemember(
x',
Cons(
x,
xs)) →
member[Ite][True][Ite](
!EQ(
x,
x'),
x',
Cons(
x,
xs))
member(
x,
Nil) →
FalsenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs,
ys) →
overlap(
xs,
ys)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Trueoverlap[Ite][True][Ite](
False,
Cons(
x,
xs),
ys) →
overlap(
xs,
ys)
member[Ite][True][Ite](
False,
x',
Cons(
x,
xs)) →
member(
x',
xs)
overlap[Ite][True][Ite](
True,
xs,
ys) →
Truemember[Ite][True][Ite](
True,
x,
xs) →
TrueTypes:
overlap :: Cons:Nil → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
overlap[Ite][True][Ite] :: False:True → Cons:Nil → Cons:Nil → False:True
member :: S:0' → Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
member[Ite][True][Ite] :: False:True → S:0' → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: Cons:Nil → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
!EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → False, rt ∈ Ω(0)
member(gen_S:0'5_0(1), gen_Cons:Nil4_0(n336_0)) → False, rt ∈ Ω(1 + n3360)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
member(gen_S:0'5_0(1), gen_Cons:Nil4_0(n336_0)) → False, rt ∈ Ω(1 + n3360)
(23) BOUNDS(n^1, INF)
(24) Obligation:
Innermost TRS:
Rules:
overlap(
Cons(
x,
xs),
ys) →
overlap[Ite][True][Ite](
member(
x,
ys),
Cons(
x,
xs),
ys)
overlap(
Nil,
ys) →
Falsemember(
x',
Cons(
x,
xs)) →
member[Ite][True][Ite](
!EQ(
x,
x'),
x',
Cons(
x,
xs))
member(
x,
Nil) →
FalsenotEmpty(
Cons(
x,
xs)) →
TruenotEmpty(
Nil) →
Falsegoal(
xs,
ys) →
overlap(
xs,
ys)
!EQ(
S(
x),
S(
y)) →
!EQ(
x,
y)
!EQ(
0',
S(
y)) →
False!EQ(
S(
x),
0') →
False!EQ(
0',
0') →
Trueoverlap[Ite][True][Ite](
False,
Cons(
x,
xs),
ys) →
overlap(
xs,
ys)
member[Ite][True][Ite](
False,
x',
Cons(
x,
xs)) →
member(
x',
xs)
overlap[Ite][True][Ite](
True,
xs,
ys) →
Truemember[Ite][True][Ite](
True,
x,
xs) →
TrueTypes:
overlap :: Cons:Nil → Cons:Nil → False:True
Cons :: S:0' → Cons:Nil → Cons:Nil
overlap[Ite][True][Ite] :: False:True → Cons:Nil → Cons:Nil → False:True
member :: S:0' → Cons:Nil → False:True
Nil :: Cons:Nil
False :: False:True
member[Ite][True][Ite] :: False:True → S:0' → Cons:Nil → False:True
!EQ :: S:0' → S:0' → False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: Cons:Nil → Cons:Nil → False:True
S :: S:0' → S:0'
0' :: S:0'
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
hole_S:0'3_0 :: S:0'
gen_Cons:Nil4_0 :: Nat → Cons:Nil
gen_S:0'5_0 :: Nat → S:0'
Lemmas:
!EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → False, rt ∈ Ω(0)
Generator Equations:
gen_Cons:Nil4_0(0) ⇔ Nil
gen_Cons:Nil4_0(+(x, 1)) ⇔ Cons(0', gen_Cons:Nil4_0(x))
gen_S:0'5_0(0) ⇔ 0'
gen_S:0'5_0(+(x, 1)) ⇔ S(gen_S:0'5_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(1) was proven with the following lemma:
!EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) → False, rt ∈ Ω(0)
(26) BOUNDS(1, INF)